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Summary of Phase P1 Results

Phase P1 consists of two tasks:

[T1] Task T1: Analysis and design of finite wordlength implementations of linear, time-
invariant é-Systems.

[T3] Task T3: 2-D and m-D 4-system models.

The major part of task T1 was carried out at the University of Notre Dame by Dr.
Peter H. Bauer while the major part of task T3 was carried out at the University of Miami
by Dr. Kamal Premaratne under grant No. N00014-94-1-0454. The project being an
extensive collaborative effort, the two PI’s have been in constant contact.

The following is a summary of the phase P1 results.

Task T1: Analysis and Design of Finite Wordlength Implementations of Linear,

Time-Invariant §-Systems
The conclusions drawn from the work conducted for task T1 may be summarized as follows:

1. The Fixed-Point Arithmetic Case: When limit cycle performance is crucial, the ¢-
operator implementation is preferrable. The é-operator implementation is superior
with regard to coefficient sensitivity issues.

2. The Floating-Point Arithmetic Case: Generally, the §-operator implementation out-
performs its g-operator counterpart. In particular, in high-order and high-speed ap-
plications, the §-operator implementation is the best choice.

Prior to a more detailed exposition, first we provide qualitative justification for the
above conclusion. The state equations of a §-operator system can be written as:

é[x)(n) = Asx(n) + Bsu(n);

glx)(n) = x(n) + A - §[x](n).
where x and u are the state and input vectors, respectively. Here, A denote a positive real
constant (typically, the sampling time). The symbol é[-] denotes the é-operator, that is,

qIXI(nL -x(r) _¢ ; 1 (n), (T1.2)
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(T1.1)

§[x](n) =




2 .
% g

and g[-] denotes the usual g-operator, that is,
g[x](n) = x(n + 1). (T1.3)
The corresponding formulation of (T1.1) in terms of the g-operator is
glx](n) = Agx(n) + Byu(n), (T1.4)

where
A

and B;=A-Bs <= Bs= 21 (T1.5)

Ag=T+A0 - As &= As = A

Now, given x and u, both representations compute g[x] with a certain accuracy.
Consider the §-operator formulation in (T1.1). Here we encounter two errors:

1. The first is due to the computation of §[x], that is, the first equation in (T1.1). We
will refer to this equation as the intermediate equation.

2. The second is due to the eventual computation of ¢[x], that is, the second equation
in (T1.1). We will refer to this equation as the update equation.

Let us assume that the total error in computing g[x] is mainly due to the intermediate
equation in (T1.1) (rather than the update equation). Then, by choosing A sufficiently
small, the total error in computing g¢[x] will be approximately the error created by the
update equation which is smaslll. In this case, the §-operator representation has better
finite wordlength properties than its g-operator counterpart in (T1.4).

If, however, the errors accumulated in the intermediate and the update equations in
(T1.1) are comparable, g[x] computed through the §-operator representation will show
approximately the same error as that computed through its g-operator counterpart as-
suming A is sufficiently small. If A is not sufficiently smaller than one, the §-operator
representation will actually perform worse than the g-operator representation!

I the error introduced in the update equation is larger than that in the intermediate
equation, the §-operator representation would consistently perform worse!! In reality, this
case is very unlikely to occur.

Next, a more detailed exposition follows.

T1.1 The Fized-Point Arithmetic Case
We now discuss some of the results regarding the fixed-point (FXP) case. Here, our results
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in fact indicate that, in case limit cycle behavior is crucial, the §-operator representation
is NOT suitable with this arithmetic scheme [1]. Such a case may occur when nonlinear
systems are implemented through FXP é-operator based schemes.

Zero-input limit cycles. Independent of A, zero-input limit cycles cannot be avoided
in FXP é-implementations. This is easily explained as follows: If A is chosen very small,
the contribution from the intermediate equation being small (since §[x] is being multiplied
by A), during the update equation, g[x] can be quantized to x creating a DC limit cycle,
that is, an incorrect equilibrium point different from zero results. We emphasize that, most
of the desirable properties of §-operator implementations are based on a small A. We may
also show that, if A is chosen larger (this case is of course somewhat less important), DC
limit cycles will still exist. Hence, §-operator representations cannot be implemented limit
cycle free in FXP format! This fact is independent of the particular realization of the
system.

Deadband size. Since §-systems cannot be implemented limit cycle free in FXP format,
it is of interest to investigate te the size of such limit cycles since, in certain situations,
such small limit cycle amplitudes can be tolerated. It can be shown that, the magnitude of
A determines the magnitude of the limit cycle. The smaller the A, the larger will be the
deadband and hence the limit cycle magnitude. An approximate relationship regarding
this is

A x size of deadband = 1, (T1.6)

where the size of deadband is measured in multiples of the quantization step size. Here,
the deadband corresponds to that obtained by considering the quantization of A - &[x].
Therefore, the usual choice of a small A creates a larger deadband!

The input driven case. Although the input driven case is not part of the originally
proposed work, some interesting results have been obtained. For small values of A, there
exists a bounded input signal that does not allow control of the state trajectory. In other
words, given sufficiently small A, the state trajectory may not be influenced by such an
input signal.

The influence of the realization. First, it was necessary to develop a suitable scheme
to investigate the effect of realization on the presence or absence of limit cycles. In this di-
rection, for the g-operator case, a computer-based exhaustive search algorithm that checks
for limit cycles (DC and/or oscillatory) has been developed [5).

3




As discussed before, we have shown that, a stable linear time-invariant §-system cannot
be implemented limit cycle free in FXP. The size of the deadband however also depends on
the particular realization, that is, the structure of 4s. Given a system transfer function,
there are forms which minimize this deadband size with respect to some appropriately
chosen measure. For example, in order to minimize DC limit cycle amplitude, one may’
choose the normal form (in terms of A;) as a suitable candidate.

The influence of quantization nonlinearity and its deadzone. Since a larger deadzone
implies larger DC limit cycle amplitudes, the use of quantizers with reduced, or even
zero, deadzone was therefore proposed. In investigating first-order systems, by reducing
the deadzone, it was found that, existence of DC limit cycles can indeed be reduced.
Unfortunately, other oscillatory limit cycles will be created. This phenomenon is due to
the increased gain exhibited towards small input signals by the quantizer.

Scaling. As discussed above, we have shown that, independent of either the form of
Aj; or the magnitude of A, a FXP implemented §-system cannot be free of zero-input limit
cycles. Hence, scaling cannot be offered as a possible solution.

T1.2 The Floating-Point Arithmetic Case

The floating-point (FLP) implementation of §-systems is currently under investigation.
The results obtained so far are very encouraging, and indicate that, quantization errors
due to FLP arithmetic have a much smaller effect on the system behavior than in the FXP
case. In fact, preliminary results show that, for §-systems of order three and higher, errors
in computing g[x] can be made significantly smaller than for the corresponding ¢-systems.
This is because, for a FLP implementation of such a system, errors created through the
intermediate equation are larger than those created through the update equation. As
previously mentioned, in this situation, é-systems behave better than their g-operator

counterparts!

Limit cycles. In FLP arithmetic, a linearly stable time invariant system, under zero-
input conditions, may exhibit four types of responses: A diverging response, an oscillatory
periodic response of arbitrary magnitude, an oscillatory periodic response in underflow,
or an asymptotically stable response. Only the last two response types are acceptable in
practice. It is well known that, the last response type is in fact a very stringent requirement
and is often not required in practice. Results so far obtained show that, when the require-
ments for a response in underflow are compared, the é-system requires less wordlength
than its ¢-system counterpart! This advantage in fact grows with the order of the system!!




Once the system reaches underflow conditions, the é-system again exhibits DC limit
cycles. However, if the exponent register is chosen sufficiently large, the amplitude of these
oscillations can be made extremely small and hence, for all practical purposes, this problem
is solved.

Deadband size. If the condition on the mantissa length that guarantees convergence
into underflow is satisfied, then the deadband size will be very small. Hence, it can be
neglected for all practical purposes. This assumes a properly chosen exponent register
length since the exponent register length determines the dynamic range of underflow.

The Influence of the Nonlinearity. Unlike the FXP case, the characteristic of the
nonlinearity has only a minor effect on the system behavior, significant differences being

present only in underflow conditions

The Underflow case. In underflow, the -system seems to behave worse than its g-
operator counterpart. This is mainly due to the fact that, a FLP system in underflow
essentially performs very similar to a FXP system. However, as mentioned above, if the
dynamic range of underflow is chosen properly, the system behavior in underflow is of little
practical interest.

Block Floating-Point Arithmetic. Even for the g-operator case, results regarding block
FLP implementations are lacking. Hence, investigations regarding block FLP implemen-
tation of §-systems is in its early stages. In order to obtain a comparison between the two
types of implementations, current research is geared towards obtaining results applicable
for the g-operator case.

T1.8 The Multi-Dimenssonal Case

The results on one-dimensional (1-D) é-operator implementations in FXP arithmetic di-
rectly carry over to the multi-dimensional (m-D) case. The existence of non-converging
responses along the boundary of the causality region can easily be proven using the same
type of argument used in the 1-D case. Consequently, §-operator based implementations
of m-D systems cannot be implemented limit cycle free in FXP.

Task T3: 2-D and m-D é-system models

Discrete-time systems implemented using the §-operator, as is clear from the discussion
above, exhibit superior finite wordlength properties with FLP arithmetic. In the case of
FXP arithmetic, they still provide superior coefficient sensitivity. The development of 2-D
and m-D models applicable for §-operator implementations was hence motivated with the




expectation that these properties would still hold true.

The conclusions drawn from the work conducted for task T3 may be summarized as
follows: Similar to the 1-D case, under FLP arithmetic, the §-operator implementation of
2-D and m-D discrete-time systems provides the best choice. Again, this is particularly
true in high-order and high-speed applications.

State-space models. In Roesser local s.s. model of g-operator formulated 2-D discrete-
time systems takes the form

2le8) = [ )R]+ (B e

= [4,) [::8,3] + [BgJu(z, 5);

v, = (o o] [T B |+ Dulutid)

el [;"gjg] +[Dylui, ),

(T3.1)

where Agl) is of size np X np, Aff) is of size ny X ny, etc. Also, gn[] and g,[:] denote the

horizontal and vertical shift operators, that is,

g(x](5,j) = x(i +1,j) and gqu[x](,7) =x(é7 +1). (T3.2)

To exploit the advantages of §-operator implementations, analogous to the 1-D case,

we define the operators
x(i +1,5) = x(5,7) _ qalx](d) = %(iog)

6h[x](iaj) = An A :
x(i,7 +1) —x(3,7) _ gu[x](¢ )’:_ x(3,7) (T3.3)
8"[x](i1j) = . A, 2J = 2 ’JA" yJ ’

where Aj and A, are two positive real constants. The corresponding é-operator s.s. model

may then be obtained as

[&.[x"](i,j)] _ [A‘” A‘”] [X"(i’f)] + [B“’] u(i, )

sbelind)] = |49 a0 | e * 5@
=4[5 D] + B
x*(i,4)
i) (T3.4)
vy =[o® c®) X084 DuG.1)
ks, 5 ..
= (0l [5G D] + G,
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This is the 2-D version of the intermediate equation mentioned earlier. In addition, as for
the 1-D case, we have the following update equations:
aa[x*)(, ) = x*(3,5) + An - SalxP)(i, 5 );

.. .. .. (T3.5)
gv[X"](3,5) = x"(3,7) + Do - 6u[x"](2, 7).
Note that,
Ay =1+A4 -A; = As=A"" (4, ~ L)
B,=A-B < B;=A"!'-B,;
’ ’ ? (T3.6)

Dy =Ds <= Ds = D,.
Here, A = [AnrIn, ® Auly,] is of size (nh + ny) X (na + ny).

The associated system theoretic notions, such as, transition matrix, transfer function,
characteristic equation, etc., have also been introduced. This s.s. model is the basis for
designing 2-D filters with superior finite wordlength properties. The design procedures
developed are expected to be extremely useful in obtaining high-Q 2-D and m-D digital
filters that are suitable for high-speed applications.

Stability. In the 1-D case, it has been shown that, direct techniques with no recourse
to transformations (that first converts a given §-system to its ¢g-system counterpart) can
provide numerically more reliable stability checking algorithms. With this in mind, for the
2-D case, a direct stability checking technique applicable to the corresponding é-system
transfer function has been introduced. For this purpose, a recently developed tabular form
was extended to the complex coefficient case and the notion of Schur-Cohn minors was

introduced to the é-operator case.

Gramians and balanced realization. The notions of reachability and observability
gramians and balanced realization have been introduced for the §-operator case. In order
to do this, first, the relationship between the gramians for the §- and g-operator cases, as
defined in the literature, was established. The reachability and controllability gramians,
that is, P and Q, respectively, for 1-D §-systems were found to satisfy

— 1 -1 w0 % -1 dc .

P=s ff‘(cI Ao BsB3(c"T - 43)7
. 1 e (T3.7)

Q= P T‘(C I — A5)~"C§Cs(cI — As) T A

where 75 is the stability boundary applicable for §-systems, that is, 75 = {c € ¥ : [c +
1/A] = 1/A}. An extension of this is then used to define the 2-D gramians of é-systems
represented in the Roesser model developed above.

7




For the important class of separable (that is, separable-in-denominator) sy..ems, it
is shown that these gramians may be computed through the solution of four Lyapunov
equations. These notions and results are useful in many applications, such as, in extracting

reduced order models of §-systems.

Sensitivity. Measures that indicate coefficient sensitivity of the 6-models developed
above have been introduced. Unlike what is available in literature, this development is
applicable to the MIMO case as well. With these sensitivity measures as a guide, devel-
opment of minimum sensitivity structures has been carried out. The connection with the

corresponding balanced realizations has been pointed out.

Roundoff noise. With the use of a noise model that takes into account the roundoff
error propagation in the s.s. model developed above, structures that minimize roundoff

noise have been developed.
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Limit cycles and asymptotic stability of
delta-operator formulated discrete-time systems
implemented in fixed-point arithmetic

Kamal Premaratne
Department of Electrical and
Computer Engineering
University of Miami
Coral Gables, FL 33124
USA
(+1) 305-284-4051
kprema@umiami.ir.miami.edu

ABSTRACT

" This paper analyzes the problem of global asymptotic
- stability of delta-operator formulated discrete-time sys-
tems implemented in fixed-point arithmetic. It is shown
that the free response of such a system tends to pro-
- duce period one limit cycles if conventional quantization
arithmetic schemes are used. Explicit necessary con-
- ditions for global asymptotic stability are derived, and
these demonstrate that, in almost all cases, fixed-point
. arithmetic does not allow for global asymptotic stability
in delta-operator formulated discrete-time systems that
use a short sampling time.

L. INTRODUCTION

Recently, discrete-time systems formulated with the in-
cremental difference operator (or, 6-operator) have been
receiving considerable attention in the technical litera-
ture [1-4]. Most of this work focus on its superior per-
formance under finite wordlength conditions when com-
pared with those formulated with the shift-operator (or,
g-operator). In particular, investigations of coefficient
sensitivity and quantization noise properties have re-
vealed that §-operator formulations usually perform sig-
nificantly better than their g-operator counterparts [1-
4]. This is especially true for high-speed applications
where the sampling rate is much larger than the un-
derlying system bandwidth. Under these conditions, g-
operator formulated discrete-time systems tend to be-
come ill-conditioned [1-2].

Although a large amount of work is available on the
effects of coefficientsensitivity and quantization noise, a
deterministic study of tlie nonlinear behavior of discrete-
time systems formulated with the §-operator has not
been undertaken. In the case of floating-point (FLP)
arithmetic, some results for feedback system are avail-

Peter H. Bauer
Department of Electrical Engineering
Laboratory of Image and Signal Analysis
University of Notre Dame
Notre Dame, IN 46556
USA
(+1) 219-631-8015
pbauer@mars.ee.nd.edu

able in [2].

In this work, we focus on the convergence behavior of the
unforced system response and global asymptotic stabil-
ity of §-operator formulated discrete-time systems imple-
mented in fixed-point (FXP) arithmetic. In particular,
via necessary conditions for stability, it will be shown
that such systems tend to produce DC limit cycles.

The structure of this article is as follows: In Section II,
we introduce notation and nomenclature. The model for
S-operator formulated discrete-time systems, with and
without quantization nonlinearities, is briefly discussed.
Section III addresses the problem of asymptotic stability
when FXP arithmetic is used for the implementation.
In terms of ensuing DC limit cycles, necessary condi-
tions for global asymptotic stability are formulated. It
is shown that, when FXP arithmetic is used, stability
of the linear system is often lost. Section IV provides
concluding remarks.

II. NOTATION AND NOMENCLATURE

Since our focus is on investigation of stability proper-
ties of é-operator formwlated discrete-time systems un-
der unforced conditions, the state equations of the sys-
tem under zero-input will be considered.

In the linear case, the general m-th order state-space
representation is given by

§{x}(n) = A%x(n); (1)
x(n+1) = x(n) + A - §[x](n), (2)
where x(n) = [z1(n),...,zm(n)]T is the state vector at

instant n, A® = {a%} € R™X™ is the system matrix,
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and A > 0 is the sampling time. Moreover, §[] repre-
sents the §-operator, that is,

zg(n+1) - z,(n)

6(8.,](") = A

Y YWw=1,....m, (3)

and §[x](n) = [6[z1](n),...,5[zm](n)]T. The actual im-
plementation of (1) and (2) in FXP format gives rise to
nonlinear quantization operations that occur at various
locations depending on the hardware realization.

Eqn. (1) can be implemented either by using single
wordlength accumulators (creating a quantization error
after each multiplication) or by using double wordlength
accumulators (creating a quantization error only after
summation). We will only consider the latter option
since practically all modern DSP machines implement
this. Eqn. (1) can then be written as

§fx)(n) = Q{A%x(n)}, (1)

where Q is a vector-valued quantization nonlinearity of

the form
Q{=1}

Q{x} = : : (5)
Q{zm}

Here, Q{z.,} denotes magnitude truncation, two’s com-
plement truncation, or rounding.

Eqn. (2) can be implemented in two different ways:

x(n +1) = x(n) + Q{A - §[x](n)}, (6)

or

x = Q{x(n) + A - §[x](n)}. (N

Eqn. (6) corresponds to quantization after multiplication
while (7) corresponds to quantization after summation.
In contrast to (1), for (2), it is not clear which of the
two quantization schemes in (6) and (7) is preferable.
We will therefore consider both possibilities.

Throughout this paper, we will use the following defini-
tion of stability:

Definition.  The discrete-time system in {(4),(6)}
or {(4),(7)} is globally asymptotically stable if and
only if, for any initial condition x(0), the state vec-
tor x asymptotically reaches zero, that is, x(n) — 0
for n — oo.

Comment. Since the FXP systems considered are in fact
finite state machines, the condition x(n) — 0 forn — oo
may be restated as x(/N) = 0 for some finite N [5].

Finally, the symbol £ is used to denote the quantization
step.

III. NECESSARY CONDITIONS
FOR STABILITY

First, we will consider the system described by {(4),(6)}.
From the definition for global asymptotic stability as
stated in the previous section, it is necessary that

Q{A - 6[x](n)} #0, forany x(n)#0. (8)
This is just one of a finite set of conditions that is re-

quired to ensure global asymptotic stability of a FXP
implementation of a linearly stable system [5].

In the case of rounding, condition (8) is violated if

1A - 8[zu)(n)] < forany v=1,...,m. (9)

[ ARG

The sampling time A in a §-operator formulated imple-
mentation is typically very small. With A = I-£ and (9),
we have

|6{z.](n)] < %, forany v=1,...,m, (10)

where [ is a positive integer.

In the case of magnitude truncation, (10) takes the form

|6[z,)(n)] < (11)

forany v=1,...m.

~

Accordingly, for two's complement truncation, we have

056[2:.,](n)<-}-, forany v=1,....m. (12)

Conditions (10-12) describe the deadband, in terms
of §{x], for which a DC limit cycle occurs. Such a limit
cycle can be avoided if (10-12) are satisfied by the zero
vector only. In the case of rounding, we therefore require

(> —,

or, equivalently,
1
A> 5,

which is impractical. Similarly, for magnitude and two’s
complement truncation, we obtain

(13)

1
l>-1-¢=7A>1, (14)

which again is equally impractical.

This result is summarized in the following theorem.
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Theorem 1. A necessary condition for stability of the
§-operator formulated discrete-time system in {(4),(6)}
is & > 0.5 for rounding and A > 1 for truncation.

The above theorem shows that high-speed 6-operator
formulated implementations that possess a small sam-
pling time cannot be realized limit cycle free in FXP
format!

A second necessary condition for the system in {(4), (6)}
can be obtained by noting that

é[x}(n) =0 (15)
can occur in (4) even though the state vector x(n) # 0.

Therefore, for rounding, no nonzero state vector x(n)
that satisfies

X7
N~

-1 | <4 x(n)<+ (16)

LU LN
TS

may be allowed to exist. Here, the inequality has to
hold elementwise. Taking norms on both sides of (16

one gets an algebraic condition on the system matrix A

that always support DC limit cycles. Eqn. (16) has the
following interesting interpretations:

1. Each of the resulting m inequalities can be geomet-
rically interpreted as the intersection of two half
spaces in R™. These intersections are symmetric
about the origin and have parallel boundaries. The
normal vector to the boundaries is given by the
particular row vector of A%. Only if the intersec-
tion of all such m half spaces contains a nonzero
point in R™, and if it belongs to the quantization
lattice, will there exist a nonzero state vector that
is an equilibrium point of the system.

2. Eqn. (16) can also be interpreted from an eigen-
value/eigenvector viewpoint. In high-speed digi-
tal filters where the sampling frequency is typically
much higher than the bandwidth of the processed
signal, a g-operator implementation’s eigenvalues
cluster around the point z = 1 {1]. The correspond-
ing 6-operator implementation for large sampling
times has eigenvalues clustered around zero. How-
ever, as the sampling time becomes small, these
eigenvalues move towards the eigenvalues of the
underlying continuous-time system (1]. In other
words, for large sampling times, the system matrix
will be ill-conditioned, that is, vectors x(n) # 0
exist such that A% .x(n) is close to the zero vector.
According to (16), this is likely to cause a DC limit
cycle. For small sampling times, this problemn may
not occur; however, in this case, the conditions in
Theorem 1 are not satisfied!

In the case of the remaining two quantization schemes,
the inequalities corresponding to (16) are given as fol-
lows: For two’s complement truncation,

4

0< A% - x(n) < ,x(n)#£0, (17)

and, for magnitude truncation,
14 14

-1 <At xmy <+ . x(n) £0. (18)

A similar analysis can be conducted for the system
in {(4),(7)}. Since (4) is common to both realizations,
(16-18) are still valid and provide conditions under which
the finite difference is quantized to zero and a DC limit
cycle is produced. We will now briefly discuss neces-
sary conditions for global asymptotic stability obtained
from (7).

For rounding, proceeding as in (9), we have

A - S[z.)(n)] € =, forany v=1,...,m,

[ SRR

and therefore

16[z)(n)} < -21—1, forany v=1,...,m. (19)
For magnitude truncation, we obtain
1
0< 8= )m) < 1. Vélen] 20, (20)
and .
-7 < §[z,J(n) <0, V§[z,] < 0. (1)

In the case of two’s complement truncation, the condi-
tion for a DC limit cycle is given by

0 < 8[z,)(n) < %, Vv=1,...,m. (22)

With A =T -{, I being a ‘small’ integer, we come to the
same conclusion as for the previously considered system:

1 .
A> 3 for rounding;

A > 1 for truncation.

Therefore, Theorem 1 also holds for the system repre-
sentation in {(4),(7)}.
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i IV. CONCLUSION

! Via a set of necessary conditions for global asymptotic
stability, it has been shown that high-speed, limit cycle
) free 5-operator implementations of linear discrete-time
| systems cannot be realized. This is due to the tendency
: of such a realization to produce period one limit cycles.
This situation arises from small values in the finite dif-
] ference being quantized to zero. Hence, convergence to
the ‘wrong’ equilibrium point is very likely. Conditions
on the system matrix and the sampling time if such limit
cycle behavior is to be avoided have been provided. The
results indicate that, in high-speed applications, these
conditions cannot be satisfied with conventional quanti-
zation schemes.
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FIXED-POINT IMPLEMENTATION OF MULTI-DIMENSIONAL
DELTA-OPERATOR FORMULATED DISCRETE-TIME SYSTEMS:

Peter H. Bauer, PhD

Department of Electrical Engineering
Laboratory of Image anc Signal Analysis
University of Notre Dame

Notre Dame, IN 46556

Abstract— In this paper, the convergence
properties of linearly stable multi-dimensional
systams are investigated for the case of delta-
operator implementations in fixed-point format.
It is shown that zero-convergence is almost never
achieved, if the sampling time is small. Using a
one-dimensional analysis, it is demonstrated that
sero-convergence cannot be guaranteed along the
axis of the first hyper-quadrant for a first hyper-
quadrant causal system. This limits the use
of delta-operators for solving partial differential
squations in discrete time with fixed-point arith-
metic.

1. INTRODUCTION

Delta-operator (or, §-operator) implementations of
discrete-time systems have been the topic of a number
of research papers within the last decade. A compre-
hensive treatment of the properties of §-operator imple-
mentations can be found in {1]. It is well known that
S-operators outperform shift-operators (or, g-operators)
in terms of their finite wordlength properties [2]. In par-
ticular, its quantization noise and sensitivity properties
make the §-operator an interesting alternative to the g-
operator in areas such as digital control, digital signal
proceasing, and generally discrete-time simulation of dy-
namical systems described by differential equations [1],

3}.

bl In this paper, we will perform a deterministic
analysis of the finite wordlength properties of multi-
dimensional (m-D) §-operator implemented discrete-
time systems. In particular, we will investigate the zero-
convergence of §-operator fixed-point implementations of
one-dimensional (1-D) and m-D systems. Although it is
of vital importance, this problem has not been investi-
gated thus far in the literature. After all, asymptotic
stability and convergence to the true equilibrium points
are some of the most fundamental requirements for any
discrete-time system realization.

This article is organized in the following way: Sec-
tion 1l introduces the notation. The m-D §-operator
model will be introduced and briefly discussed. This
section will also provide the problem formulation. Sec-
tion Il provides necessary 1-D stability conditions for
m-D first hyper-quadrant causal systems with nonlin-

0-7803-1797-1/94/$3.00 © 1994 IEEE
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Kamal Premaratne, PhD
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earities. Using these necessary conditions, section 1V
provides a stability and convergence analysis for m-D
systems. It will be shown that the resulting 1-D systems
cannot ensure zero-convergence. Section V contains con-
cluding remarks.

II. NOTATION AND PROBLEM FORMULATION

The m-D Roesser model has the following 6-
operator formulation {4]:

&V fx(V(n) A4, At x(1)(n)
6™ [x(™))(n) A, Al Lx(™)(n)
B} 1

+1{ : | um)y (1
B}, |
¢V [x(V](n) x(1)(n) 7
¢(™)[x(™)](n) x{™)(n)
6§ [x(1](n)
+4- : )

8™ [x(™)(n)

The input-state equations in (1) and (2) describe a first .

hyper-quadrant causal m-D system with a uniform sam-
pling F_eriod of A in all directions. The operators ¢f*)
and &(") represent the shift- and delta-operator in the
direction specified by the axis n;. In particular

¢ x{)(n)
= x(‘)(n; -
6(‘)[x(‘)](n)

SR, i+ L niey, .., nm) (33)

|
i




= %(x“)(ﬂl.---.ﬂi—hﬂi +1|"‘+1t""""‘)
- x{(n)). (3b)

Here, (n) = (ny,... ,nmy) denotes a point in the first
hyper-quandrant, xm(n) is the portion of the state vec-
tor propagating in the direction specified by the axis n;,
w(n) is the m-D input vector, and Afj and Bf , fori =
1,...,m, j = 1,...,m, are the submatrices of the sys-
tem and input matrices, respectively.

If (1) is realized in fixed-point arithmetic, it takes
the following form under zero-input conditions:

&V (n)

Dx(1)
Ol ](n)Ag‘ Al x((n) (4)
-q . :
Afm Af,",. x(™)(n)
Q{=} z
where Q{x} = : with x = :
Q{zm} Zm

Equation (4) assumes quantization after summa-
tion; since practically all modern DSP machines imple-
ment this quantization scheme, we utilize this. The
vector-valued quantization nonlinearity Q{:} may rep-
resent any one of the conventional schemes, viz., magni-
tude truncation, magnitude rounding, two’s complement
truncation, and two’s complement rounding.

Equation (2) can be implemented in two different
forms:

¢ [x(V)(n)
¢™ [x(™(n)
x(1)(n) 6(”[::“)](11)
= : +Q{a. : (%)
x(™)(n) 8™ [x(™))(n)
or
¢V x(D(n)
¢™ x{™)(n)
x(1)(n) 6 [x(1)(n)
=Q : +4. : {6)
x(™)(n) 5(M)[x(nt)](n)

Equation (5) corresponds to quantization after muiti-
plication, whereas (6) corresponds to quantization after
addition. In contrast to (1), for (2), it is not obvious
which of the two forms stated above is preferable.

The following definition for asymptotic stability 5}
will be used throughout this paper.

Definition. An m-D first hyper-quadrant causal discrete-
time system is asymptotically stable under all finitely
extended bounded input signals u(n) where

jJum})] €S, for i+ ---4+nm < D; (7
u(n) =0, for ny+---+nm > D, (8)

if all the states of the m-D discrete-time system asymp-
totically reach zero for ny + --- + nyy — o0o0. Here,
n, 20, v=1,...,m, Sis a nonnegative real number,
and D is a positive integer.

Since the fixed-point systems considered are in fact
finite state machines, the condition

x(1)(m)
. —o,
x(™)(n)
forni+---4+nm — 00,7, 20, v=1,...,m, can be
strengthened to
x(1)(n)
. o,
x(™)(n)

forall pointsny +---4+nm 2¢,n, 20, vr=1,...,m,
where ¢ is some finite integer.

Problem Formulation. Analyze the asymptotic zero-
convergence of the state response of systems in (4,5)
and (4,6) under the assumption that the underlying lin-
ear system is asymptotically stable.

I{I. NECESSARY CONDITIONS FOR
GLOBAL ASYMPTOTIC STABILITY
OF m-D SYSTEMS

In this section, we present some necessary condi-
tions for stability of a first hyper-quadrant causal m-
D discrete-time system represented in its Roesser local
state-space model in (1,2). These necessary conditions
are formulated in terms of 1-D conditions. This theorem
follows directly from a result in [6) which was formulated
for g-operator implemented discrete-time systems. The
proof of the theorem rests on the fact that a first hyper-
quadrant m-D system can be described by a 1-D system
for those locations that are along the m coordinate axes
of the boundary of the hyper-quadrant. Reformulating
the result in [6] for §-operator systems produces the fol-
lowing theorem:




Theorem 1.

(a) A necessary condition for global asymptotic sta-
bility of the system in (4,5) is that each of the following
1-D systems in (9,10) is globally asymptotically stable:

§O D)) = G {{441x(ni) } 9)
¢Dx)(n;) = x(N(n;) + Q {a - 6 [xD(ni) } (10)
wherei =1,.

(b A nee-ury condition for global asymptotic sta-
bility of the system in (4,8) is that each of the following
in 1-D systems in (11,12) is globally asymptotically sta-
ble:

s ns) = Q {[Ah]x(ni) } (11)
dpNn)=QqQ {x(‘)(n;) +4 -8 xI(n)} (12)
wherei=1,...,m.

Proof. For a detailed proof, and generalizations to higher
sub-dimensional systems, the reader is referred to [6]. B

Theorem 1 can be viewed as an extension of the
concept of practical BIBO stability to asymptotic sta-
bility of nonlinear systems. It is particularly useful in
proving instability in m-D nonlinear systems.

IV. NECESSARY CONDITIONS FOR
GLOBAL ASYMPTOTIC STABILITY
OF 1-D SYSTEMS

Let us rewrite (9), (10), and (12) as 1-D matrix
equations of order K. In this case, (9), (10), and (12)
yield (13), (14), and (15), respectively:

6[z1)(n)
§{zx)(n)
“:1 afK zi{n)
= o : ;1 (13)
af, - byl Laktn)
zi(n+1)
zx(v; +1)
z1(n) 8z ](n)
= +Q<¢A. ; (14)
zx(n) S[zx}(n)
zi(n+1)
zx(n + 1)
z1(n) 8[z1)(n)
=Q .| +a- : . (15)
zsc(n) §[xzk)(n)

Now, we are in a position to formulate the second theo-
rem which presents a necessary condition for stability of
1-D systems.

Theorem 2. A necessary condition for global asymptotic
stability of the system in (13,14) or (13,15) is given by

a>05,
a1,

for magnitude rounding;
for truncating.

Proof. For global asymptotic stability of (13,14), it is
necessary that

8[z1]}(n)
QA : #£0, (18)
[z kc)(n)
z1(n)
for any : #0.
zg(n)

First, we will address the case of magnitude round-
ing. Obviously, condition (16) is violated if, for z, # 0,

|A-6[:y](n)|<§, for v=1,...,K, (17)

where ¢ is the quantization step. Expressing the sam-
pling time A as an integer multiple of ¢, we have

A=1-¢ (18)
where I is some (typically small) positive integer.

With (17) and (18), we obtain the following condition
for instability:

6fzo)(n)] < 2ll v=1,...,m, 19)

forz, #0, v=1,.

Condxtlon (19) is not. satisfied for any nonzero value
of z, (that is, the condition for instability is not satisfied)
if £ > 1/2I, or equivalently,

a2

Nlr-

(20)

This proves the theorem for magnitude rounding.
For the case of magnitude truncating, (17) takes
the form

A - S{zu)(n)l <€, for v=1,... K. (21)
Therefore, (19) becomes
oLzl < 7 (22)

ARSI i - <ot | BB iy >+ - rwmras . - -




This finally yields
a2l (23)
For two's complement, (17) takes the form
0< A -§[z]l(n)<t, for v=1,. .. K. (24)
This results in * .
0 < fzlin) < 7. (25)

snd consequently, A > 1. This proves the theorem for
the system in (13,14). A similar argument can be used
for the system in (13,15) by considering the cases for
which

z1(n) §[z1](n)
Qf| ¢ |+ac]
zx(n) S[z)(n) (26)
z1(n)
=Q R
zk(n)
for nonzero state vectors. ]

We can now combine Theorems 1 and 2 to formu-
late a necessary condition for stability of m-D first hyper-
quadrant causal §-operator formulations of the general-
ized Roesser model.

Corollary 3. A necessary condition for global asymptotic
stability of the m-D systems in (4,5) or (4,6) is

A > 05,
A 21, for truncatiing.
. Proof. The proof follows from Theorems 1 and 2. ]

Comments.

1. Theorem 2 and Corollary 3 are also essentially ap-
plicable to the case where the sampling time varies
with the direction of propagation. In this case, the
inequalities in Theorem 2 and Corollary 3 would
have to be replaced by

A 205,

a; 21,
fori=1,...,m.
2. Most of the previous results on the superior fi-
nite wordlength properties of §-operators depend
on choosing a very small sampling time A. In such

s case, Theorem 2 and Corollary 3 show that the
system response will not converge to zero for the
unforced case.

3. Our analysis is limited to the zero-input case for
which DC limit cycles were used to derive condi-
tions for non-convergence. If one includes other

for magnitude rounding;

for magnitude rounding;
for truncating,

types of limit cycles in the analysis, the require-
ments for A may become even more severe.

4. Theorem 2 and Corollary 3 show that fixed-point
implementations of 1-D and m-D §-operator sys-
tems cannot be realized limit cycle free, if good coef-
ficient sensitivity and quantizalion noise measures
Aave to be achieved. See also [7].

V. CONCLUSION

In this paper, it was shown that fixed-point imple-
mentations of 1-D and m-D é-operator systems are not
limit cycle free even if the underlying linear system is
stable and the sampling time is chosen small. This non-
convergent behavior can be explained by the quantiza-
tion of the é-term to zero which leaves the state vector
unchanged. The smaller the sampling time, the more
severe this effect is. Therefore, the practical value of
S-operators for fixed-point implementations of 1-D and
m-D systems is questionable. There are however indica-
tions that this effect is much less severe in floating-point
implementations.

é-operator implemented discrete-time systems rep-
resent a class of systems where the quantization noise
at the output can be small compared to other realiza-
tions. However, as was shown above, such realizations
will invariably exhibit limit cycle, that is, highly cor-
related quantization noise, behavior. Therefore, in this
case, typical measures for quantization noise are of very
limited use for obtaining any insight into the likelihood
of limit cycles and vice versa.
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Two-Dimensional Delta-Operator Formulated
Discrete-Time Systems: State-Space Realization and
Its Coeflicient Sensitivity Properties
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Abstract—By developing the 5-operator ana-
log of the Roesser model, state-space realiza-
tion of two- and multi-dimensional §-systems
is investigated. The corresponding notions
of gramians and balanced realization are also
defined. It is shown that, discrete-time sys-
tem implementation using this model can
yield superior coefficient sensitivity proper-
ties.

I. Introduction

Judging by its performance in the one-dimensional (1-
D) case [2], [5-6], one is led to expect superior coeffi-
cient sensitivity and roundoff noise performance with §-
operator implementation of two-dimensional (2-D) and
multi-dimensional (m-D) discrete-time (DT) systems.
With this in mind, §-operator analog of the g-operator
Roesser local state-space (s.s.) model [12] is developed.
We also propose the notions of gramians and balanced
(BL) realization. As expected, realization using this
model can provide superior coefficient sensitivity prop-
erties.

IL. Nomenclature and Preliminaries
A. Nomenclature
R: Reals; 9: Complex numbers; RI*?P, II%P: Matri-
ces of size ¢ X p over R and Q; Jn: n X n unit ma-
trix; A°®, trace[A], ||Allr: Conjugate transpose, trace,

and Frobenius norm of matrix A; e(") Unit vector in

R*® with 1 on the ;-th row; E"’ = e(')eg”) € RIXP;

vﬂ‘? = Eizl 1-1 E(qu) ® E(qu) € W xp

For g- and §-systems, we use t.he mdetermnnates z and
¢, respectively. For 1-D systems, § = (¢~ 1)/r > c =
(z = 1)/r, where r is a positive real constant, usually
the sampling time. Let ﬁ: = {(ch,cv) € % : |cn +
1/m} € 1/mn,lce + /] < 1}. T2 is its boundary.
The corresponding g-system regions are denoted with the
subscript q.

K.P. and P.H.B. gratefully acknowledge the support received
from the Office of Naval Research (ONR ) through the grants
N00014-94-1.0454 and N00014-94-1-0387, respectively.

P.H. Bauer
Department of EE
Laboratory of Image and Signal Analysis
University of Notre Dame
Notre Dame, IN 46556 USA

B. Preliminaries

Consider a linear, shift-invariant, strictly causal, p-input
g-outrut 2-D DT system. Its nyh-n, v Roesser local s.s.
model {A,B,C‘,f)} takes the form [12}:

al 6] = i (%46 4 (B i1
[q:[x"](i,j)] = (4] [xv(,-,j-)] + (BluG, j);

a [ X2 (69)] Lop @)

70,3 = €1 [Fale D | + 101G,

where u € RP, x» ¢ R"r, x" € R®, and y € 9. x*

and x" are the h.p. and v.p. local state vectors. Take
n = n, + ny. Also,

an[x)(4,7) = x(i+1,7);  qux](i,5) = x({,5 +1). (2.2)

In what follows, we use matrix partitioning that con-

L[4 A® . [BM N
form to A = [4(3) AW | B = B | and C =
[é'(l), C‘(z)] . The corresponding 2-D characteristic equa-
tion and transfer function are

det[I; — A] = det[zpIn, ® 20In, — Al; (2.3)
H(zp,2,) = C(I: - A)"'B + D, )
where 25,24 € S I: = z31n, ® 29In, € S**". With no
nonessential singularities of the second kind (NSSK) on
72, {A, B,C, D} is BIBO stable iff 3]

det{l, — A] # 0, V(z4,20) € U, (2.4)

III. 2-D 6-Model

A. Local s.s. model
Analogous to the 1-D case, define §,(] and §[] as

sulxl(i j) = XEF M; - x(i,4) _ anXI(i,jr)h- x(i,4).
buli, ) = MeIF N oxd) %lxl(m‘r) - XUyj)
v v (3.1) .




Here r, and 7, are positive real constants denoting the
‘sampling times’ along h.p. and v.p. directions, respec-
tively. Note that

qu = 1 + 74by,

=1+ 1ada; (3.2)

and letting r = [ryIn, @ oln,] € R*X",

[#EER] e [ ][RR
Using (3.3) in (2.1), we get @3

[BBER] = [ 3]

i (34)
yi) =01 [ B] + 10Muti.s,

L (A 4@ . [BW .
where A = [A(a) A(4)],B— [B(z) ,andC-

[C(‘),C(’)]. In addition, we need to perform

aalx?] = x* 1 -8 [x"]; gulx®] = X7 +7y -84 [x"]. (3.5)

Here,

A=I,+1A;, B=rB; C=C; D=D. (3.6)
B. Properties of the 2-D §-model
Most of the following properties may be derived in a man-
ner that is exactly analogous to that in [12].

The transition matriz A of the §-model, may be
recursively computed from

(0,(:,3)=(0,0);
[I"h elﬂu] (‘ J) (0 o)!

n (1) A
A = ¢ Io" g]"'T[Aol A ](tJ) (1,0);

0 o 0 ,
o I, ]+T[A(3) A(4)] »(1,5)=(0,1);

[ A10A4i-1. 4 401 A¥vi=1  elsewhere.

3.7
The general response of the §-model is

B =g 1)

k=0

+ Z.: Ai=di [x.,(‘,),, 0)] + f(u),
=0

(3.8)

— i~h=1,j—k, [ B}
where £(u) = 3.0y g(aky<(iyy (A" r[ 0

+ Ai-hi—k-1, [B?’) ] Ju(h, k).

Let I. = cpln, ® cvln, € I***. Then, the 2-D 6-
model’s characteristic equation and transfer function are

det{l. ~ A] = ——det[l; - A|g—c;
[c ] det [ ] [3 ]l' < (39)
H(Cl.,cq) = H(Zh. Zv)ll—«:.
where
zan=1l4 e, 2o =14 rycy. (3.10)

From now on, the variable transformation in (3.10) is
denoted by ¢ — z or z — ¢ whatever is appropriate.
Nonsingular transformations of the type

i3] =m 263

where T = [T(1) @ T(4)], yield the equivalent 2-D s.s.
realization {4, B,C, D}. Here,

(3.11)

A=TAT™), B=TB, C=CT"'; D=D. (3.12)

With no NSSK on T, {4, B,C, D} is BIBO stable iff

det[I. — A] # 0, ¥(ch,cy) € Us. (3.13)
C. Gramians
The gramians of 2-D g¢-systems are taken to be natural
extensions of the integral expressions of their 1-D coun-
terparts [11}. We will adopt a similar approach. In what
follows, we consider the 1-D (or 2-D) stable &§-system
{A,B,C, D} with gramians P and Q. The correspond-
ing g-system is {A, B,C, D} with gramians P and Q.
1-D case. The gramians are defined in [10).
Definition 3.1. [10]. The gramians are the solutions to
the Lyapunov equations

AP+ PA®" 4+1-APA* = ~-BB";
A'Q+QA+T7-A"QA=-C"C.

Lemma 3.1. The gramians satisfy the integral expres-
sions

P=-@ rrr-%_. 9= ¢ cc %,
2rj 14 7c 27 7, 1+ rc
where F(c) = (cIn — A)7' B and G(c) = C(cIn - A)7!.

Moreover, P = rP and Q = Q/r.




Proof. Subatitute A = I, + 74, B =18, C =C, and
D=D (10] in the equations in Definition 3.1, and note
the integral expressions for P and Q in (8. |

2-D case. With Lemma 3.1 in mind, we have
Definstion 3.2. The gramians are

1
| —_— FF*
(275)? f;‘z

1 .
(27j)?

dep dey
14+ rhch 1 + rycy |

dep dcy
1+ raep 14+ ryee !

Q=

where P = [g;; g((:;] and Q =
Also, F(cy,cy) = (Ic - A)"'B =
G(cp ) =CI. - A)~ ' =[g1,...
Remarks.

1. Note that, (1. -

(1) 2)
[8(3) QE«)
(f1,... ,f,.]
,81'5]-

A)~Ye—s =(I: - A)~l7, and

Flees = F; Glems =G -7 (3.14)

2. Definition 3.2 is completely analogous to the 1-D and

2-D g¢-systems [7], [11].

Lemma 3.2. P=r,7uPand Q = ryryr—1Qr-L.

Proof. Consider P in Definition 3.2. Use ¢ — z, (3.14),

and definition of gramians for 2-D g-systems [11]. |
The following are in complete analogy with 2-D g¢-

systems.

Lemma 3.3. The gramians may be represented as

oo o0

t=0 j=0

where, for (i, j) = (0,0), M; ; = 0, and, for (i,j) > (0,0),
. (1) o

M."' = At~lirp [Bo ] + Ahi~1lp B‘()z)

Lemma 3.4. Let {A, B,C, D} with gramians P and Q be

an equivalent system as in (3.10-11). Then, P = TPT*

and Q =Tt “QT~-!. Moreover, the eigenvalues of PQ

and PQ are invariant.

Definition 3.3. {A,B,C,D} is said to be balanced if

P1) = Q1) = (1) = diag{a“),o'g”,. a(nlh)} and

P = Q) = £) = diag{o{") o{"),...,01V}.

If the diagonal submatrices of P and Q are each posi-
tive definite (p.d.), a BL realization may be obtained (4].
Regarding this, we have
Lemma 3.5. Local reachability and observability of
{A,B,C,D} and { A, B,C, D} are equivalent. Moreover,

when {4, B,C, D} is locally reachable and observable,
P, P4 QM) and QY are each pd.

Separable systems. A separable (in denominator) 2-D
g-system will have A(?) = 0 (and/or A() = 0) and all
off-diagonal submatrices of P and Q are zero. The di-
agonal submatrices may be computed through two pairs
of Lyapunov equations [11]. Clearly, a separable 2-D ¢-
system yields a separable 2-D 6-system.

Theorem 3.6. Let {A, B,C, D} be separable with A(?) =
0. Then, P(?) = Q(?) = 0 and PB) = Q3 =0, and

AM p(1) £ p) 47 4 £, 40 plD) 4(1)°
= -BM B /ry;
AT QM) £ () A1) 4 £, A(VT QM) 4 (1)
= - [c(l) R(e)A(s)]‘ [c(l) 3(4),4(3)] /7v;
AW P 4 p(O) 40" 4 p 4(4) p(8) 4(9°
= - [3(2) A®sM) ] [3(2) AP SM ] my,;
A(‘)'Q(‘) +QWAM 4 o, AW QM) 4
= -C°Cc?)/r,.

Here, RY)° R(Y) = £, 7,Q4) and S(VS)" = 7,7, P(1),

IV. Coefficient Sensitivity

By generalizing a certain sensitivity measure, Lutz and
Hakimi [9) have addressed sensitivity minimization of
MIMO 1-D CT systems. The SISO 2-D g-operator case
is in [7]. In what follows, we study the coefficient sen-
sitivity of the 2-D §-model in section III. We follow a
more direct approach using Kronecker product formula-
tion and, hence, the results are applicable to the more
general MIMO case. Using (1], we may show

Salch, ) =Un DG] - Unxn-In®@F) (41)
Sg(ch,cv) = [In ® G] - Unxp (4.2)
Sc(ch,cv) = Ugxn - [In @ F) (4.3)
Splen,cv) = v.qxp (44)

Lemma 4.1. The quantities in (4.1-4.4) are given as

g1

Sa=| | [fy 21
[ &n
'g§1) g(1P)

SB — . -, . '
.35.” gS.”’
f'fl) f'(.‘l)

SC = . 5 '
Lfl(q.)‘ f'(lé).




B Ey,
Sp = : .
Ev.l Eqm

Here, fg’ )” denotes a (g % p) null matrix except its j-th
row which is f* and gf") denotes a (g x p) nuil matrix
except its j-th column which is g;.

Proof. This may be shown through the results in [1] and
simple yet tedious algebraic manipulations. a
Corollary {.2. The quantities 54,58, Sc, and Sp of the
6-model and the quantities 5 A S B Sc. and § p of the
corresponding g-model are related by Sple—s = T5;,
Sple—s = 1'53. Scle—s = sé: and Sple—s = 5[)-
where T= 1[5, ¢ ® Toln,q € R*I1X™,

Proof. Apply (3.14) to Lemma 4.1. |
To proceed further, we utilize the following

Definition {.1. Let H(ch,cy) be a bivariate matrix-
valued function that is analytic on 72. Then,

dz;. dz,

Zv

18 (e, eo)llp = o )2f IIH(ch,cv)lc-.-"p

Remark. This norm is extensively utilized in related work
[7] due mainly to the fact that it leads to tractable re-
sults. This, and our desire to make a comparison with
the corresponding q-model, are the primary reasons for
its use here.

We now define the absolute sensitivity measure

M = (1SAIR + Z1Sal} + ISl + —IISol. (4.9)
b 4 q Pq
Remarks.
1. The use of different norms is for mathematical feasi-
bility and tractability (7], (5].
2. The weights associated with each term in (4.5) may
be thought of as aueraging factors per input/output.
3. Due to (3.5), M should contain ||Sr, || and ||S-,||.
However, we assume that r, and 7, are selected such
that each possess exact binary representations. Hence,
these additional terms are neglected.

Using an argument similar to that in (7], one may show
the following:

ISall} < trace[P] - trace[rQr] (4.6)

ISsll3 = p - trace(rQ7] (4.7)
[IScll} = q - trace[P] (4.8)
[iSoll3 = pe (4.9)
Combining (4.5) with (4.6-9), we get
M < M = (trace[P] + 1)(trace[rQr] +1).  (4.10)

It is customary to perform a minimization of M. Hence,
one attempts to characterize those {A, B, C, D} that are
‘bound optimal’ with respect to M. Analogous to 2-D
g-systems case [7], one may for instance show that a BL
realization (modulo an orthogonal nonsingular transfor-
mation) is ‘bound optimal’ with respect to M.

Compared to a ¢-system, its é-system counterpart
yields a smaller M whenever trace[Q] > trace[rQ7], that
is,

(1= 12) - trace[@M] + (1 - r2) - trace[@(¥)] > 0. (4.11)

Note that, with the local reachability and observability
assumption of {A, B,C, D}, p.d. of Q(!) and Q*) (and
hence of Q(1) and Q(*)) are guaranteed. Thus, (4.11) is
satisfied if 7, < 1and 7 < 1.

VII. Conclusion
We have developed the é-operator analog of the
Roesser local ss. model. Notions of gramians and BL
realization are also proposed. As is expected, under mild
conditions, this model offers superior coefficient sensitiv-
ity properties.
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